(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sum(s(x)) →+ +(sqr(s(x)), sum(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(0') → 0'
sum(s(x)) → +'(sqr(s(x)), sum(x))
sqr(x) → *'(x, x)
sum(s(x)) → +'(*'(s(x), s(x)), sum(x))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sqr(s(x)), sum(x))
sqr(x) → *'(x, x)
sum(s(x)) → +'(*'(s(x), s(x)), sum(x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: 0':s:+' → *'
*' :: 0':s:+' → 0':s:+' → *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sum
(8) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sqr(
s(
x)),
sum(
x))
sqr(
x) →
*'(
x,
x)
sum(
s(
x)) →
+'(
*'(
s(
x),
s(
x)),
sum(
x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: 0':s:+' → *'
*' :: 0':s:+' → 0':s:+' → *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))
The following defined symbols remain to be analysed:
sum
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sum.
(10) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sqr(
s(
x)),
sum(
x))
sqr(
x) →
*'(
x,
x)
sum(
s(
x)) →
+'(
*'(
s(
x),
s(
x)),
sum(
x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: 0':s:+' → *'
*' :: 0':s:+' → 0':s:+' → *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))
No more defined symbols left to analyse.